Neural Learning Enhanced Variable Admittance Control for Human–Robot Collaboration
نویسندگان
چکیده
منابع مشابه
Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator
In order to get natural and intuitive physical interaction in the pose adjustment of the minimally invasive surgery manipulator, a hybrid variable admittance model based on Fuzzy Sarsa(λ)-learning is proposed in this paper. The proposed model provides continuous variable virtual damping to the admittance controller to respond to human intentions, and it effectively enhances the comfort level du...
متن کاملLearning optimal variable admittance control for rotational motion in human-robot co-manipulation
In this paper the problem of variable admittance control in human-robot cooperation tasks is investigated, considering rotational motion of the robot’s end-effector. A Fuzzy Model Reference Learning algorithm is used to determine online the appropriate virtual damping of the admittance controller with partial state representation of the system. The learning algorithm is trained according to the...
متن کاملNeural-learning Control of Nonlinear Systems Using Variable Neural Networks
This paper is concerned with neural-learning control of nonlinear dynamical systems. A variable neural network is introduced for approximating unknown nonlinearities of dynamical systems. Based on variable neural networks, adaptive neural control and predictive neural control schemes are studied. In the adaptive neural control scheme, the weight-learning laws and adaptive controller developed u...
متن کاملLearning Variable Impedance Control Learning Variable Impedance Control
One of the hallmarks of the performance, versatility, and robustness of biological motor control is the ability to adapt the impedance of the overall biomechanical system to different task requirements and stochastic disturbances. A transfer of this principle to robotics is desirable, for instance to enable robots to work robustly and safely in everyday human environments. It is, however, not t...
متن کاملLearning Reactive Admittance
In this paper, a peg-in-hole insertion task is used as an example to illustrate the utility of direct as-sociative reinforcement learning methods for learning control under real-world conditions of uncertainty and noise. An associative reinforcement learning system has to learn appropriate actions in various situations through search guided by evaluative performance feedback. We used such a lea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2969085